1,733 research outputs found

    The perception of melodic consonance: an acoustical and neurophysiological explanation based on the overtone series

    Get PDF
    The melodic consonance of a sequence of tones is explained using the overtone series: the overtones form "flow lines" that link the tones melodically; the strength of these flow lines determines the melodic consonance. This hypothesis admits of psychoacoustical and neurophysiological interpretations that fit well with the place theory of pitch perception. The hypothesis is used to create a model for how the auditory system judges melodic consonance, which is used to algorithmically construct melodic sequences of tones

    A Polytope Combinatorics for Semisimple Groups

    Get PDF
    Mirkovi and Vilonen discovered a canonical basis of algebraic cycles for the intersection homology of (the closures of the strata of) the loop Grassmannian. The moment map images of these varieties are a collection of polytopes, and they may be used to compute weight multiplicities and tensor product multiplicities for representations of a semisimple group. The polytopes are explicitly described for a few low rank groups

    Factors that differentiate distressed and non-distressed marriages in army soldiers

    Get PDF
    Data from U.S. Army soldiers (N = 697) were analyzed to determine the factors that differentiate distressed from non-distressed relationships. Results show that most soldiers had relationship satisfaction scores that categorized them as non-distressed. In addition, soldiers in dual-military marriages had relationship satisfaction scores similar to those of soldiers in military-civilian marriages. Finally, several variables including rank, relocation status, relationship length, and relationship status differentiated distressed from non-distressed relationships. Implications for intervention programming and future research directions are discussed

    Multisite functional connectivity MRI classification of autism: ABIDE results

    Get PDF
    Background:: Systematic differences in functional connectivity MRI metrics have been consistently observed in autism, with predominantly decreased cortico-cortical connectivity. Previous attempts at single subject classification in high-functioning autism using whole brain point-to-point functional connectivity have yielded about 80% accurate classification of autism vs. control subjects across a wide age range. We attempted to replicate the method and results using the Autism Brain Imaging Data Exchange (ABIDE) including resting state fMRI data obtained from 964 subjects and 16 separate international sites. Methods:: For each of 964 subjects, we obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the gray matter (26.4 million “connections”) after preprocessing that included motion and slice timing correction, coregistration to an anatomic image, normalization to standard space, and voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter signals. Connections were grouped into multiple bins, and a leave-one-out classifier was evaluated on connections comprising each set of bins. Age, age-squared, gender, handedness, and site were included as covariates for the classifier. Results:: Classification accuracy significantly outperformed chance but was much lower for multisite prediction than for previous single site results. As high as 60% accuracy was obtained for whole brain classification, with the best accuracy from connections involving regions of the default mode network, parahippocampaland fusiform gyri, insula, Wernicke Area, and intraparietal sulcus. The classifier score was related to symptom severity, social function, daily living skills, and verbal IQ. Classification accuracy was significantly higher for sites with longer BOLD imaging times. Conclusions:: Multisite functional connectivity classification of autism outperformed chance using a simple leave-one-out classifier, but exhibited poorer accuracy than for single site results. Attempts to use multisite classifiers will likely require improved classification algorithms, longer BOLD imaging times, and standardized acquisition parameters for possible future clinical utility

    Bose-Einstein condensates in standing waves: The cubic nonlinear Schroedinger equation with a periodic potential

    Full text link
    We present a new family of stationary solutions to the cubic nonlinear Schroedinger equation with a Jacobian elliptic function potential. In the limit of a sinusoidal potential our solutions model a dilute gas Bose-Einstein condensate trapped in a standing light wave. Provided the ratio of the height of the variations of the condensate to its DC offset is small enough, both trivial phase and nontrivial phase solutions are shown to be stable. Numerical simulations suggest such stationary states are experimentally observable.Comment: 4 pages, 4 figure
    corecore